
16

Avoiding Coincidences
by Florian Frick

The complete graph on five vertices is 
non-planar that is, for any drawing in the 
plane, two edges share a point outside of a 
common vertex. The real projective plane 

P 2 does not embed into 3, that is,  
any continuous map f  : P 2―> 3 has  
a double point. In fact, any immersion of  

P 2 into 3 has a triple point. This article 
discusses some fragments of the story of 
developing a theory of non-embeddability 
and extensions to higher multiplicity 
coincidences (such as the existence of triple 
points, quadruple points, etc.) from the 
viewpoint of discrete geometry.

For real numbers x0 ≤  x1 ≤ … ≤  x2n  
the set  ∩ n

i = 0
[ x i ,x2n – i ] consists  

only of the point xn— the median of the 
x i, which leaves precisely n  of the x i to 
either side of it. Bryan Birch, of Birch and 
Swinnerton-Dyer fame, showed in a 1959 
paper that one may observe a similar 
phenomenon for tuples of real numbers: 
Any 3n  points in the plane 2 can be 
split into n  triples of points such that the 
corresponding n  triangles all have a point  
in common.

For higher dimensions, Birch asked whether 
any (d +  1) n  points X  in d determine n 
vertex-disjoint simplices of dimension d  that 
all contain a common point of intersection. 
Any such point of intersection c  would be a 
center point for X : Any half-space containing 
c  also contains at least a fraction of 

d + 1
1

  of the points of X , as it must contain 
at least one vertex per simplex. For d=1 this 
recovers the notion of median. Birch already 
recognized that one can be more economical 
about the number of points. He conjectured 
that any (n –  1)(d  + 1) + 1 points in d 
may be partitioned into n sets X1, … , Xn 
whose convex hulls contain a common point 
and confirmed this conjecture for d = 2. It is 
easily checked that for a sufficiently generic 
set of (n –  1)(d  + 1) points in d even the 
affine hulls of any partition X1, … , Xn into n 
parts have empty intersection, and thus this 
result would be optimal.

Figure 1. Any nine points in the plane can 
be split into three triangles that surround a 
common point — the red cross
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Two years after the publication of Birch’s 
paper, Norwegian graduate student Helge 
Tverberg proved the same result, unaware 
of the earlier work by Birch. After learning 
about Birch’s theorem for the planar case 
and the corresponding conjecture for 
higher dimensions, Tverberg visited Birch in 
Manchester in 1964. Tverberg would later 
describe the weather in Manchester during 
his visit as “bitterly cold,” and unable to sleep 
for the last night of his visit, since the heater in 
the hotel had gone off, the solution to Birch’s 
conjecture finally dawned on Tverberg. Since 
then Birch’s conjecture has been known as 
Tverberg’s theorem and is now considered a 
central result in discrete geometry.

Figure 2. Ten points in the plane and a 
color-coded partition into four parts with 
intersecting convex hulls

points in 2 either one point is contained in 
the triangle spanned by the other three or 
the four points come in two pairs such that 
the segments connecting the pairs intersect. 
Another way of saying this is that for any 
straight-line drawing of a tetrahedron in the 
plane two vertex-disjoint faces must intersect. 
It is natural to ask whether the drawing needs 
to consist of only straight lines, or whether the 
overlap of vertex-disjoint faces is a topological 
feature that holds more generally for any 
continuous drawing. Thus, in 1976, Imre 
Bárány conjectured that for any continuous 
map from the (n –  1)(d  + 1) – dimensional 
simplex to d there are n  pairwise disjoint 
faces whose images have a common point of 
intersection. The case of an affine map exactly 
corresponds to Tverberg’s theorem, since the 
image of a face under an affine map is the 
convex hull of its vertices. 

The n=2  case of Tverberg’s theorem, that 
any d+2  points in d can be split into 
two sets, whose convex hulls intersect, had 
already been established decades earlier 
by Johann Radon in 1921. The planar case 
of Radon’s result states that for any four 

Figure 3. A linear and a continuous drawing 
of a tetrahedron in the plane
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Bárány’s conjecture became known as the 
topological Tverberg conjecture and was 
soon after — in 1981— shown to hold for 
n  a prime. Özaydin later showed the case 
of n  a power of a prime. This dependence 
on divisibility conditions of the intersection 
multiplicity n  should come as a surprise.  
It stems from the following construction:  
If f   :  X  ―> d avoids n -fold points of 
coincidence, then it induces a map from 
n -tuples of pairwise distinct points in X ,  
the configuration space of X , to ( d )n that 
avoids the diagonal, that is, the subspace 
of ( d )n , where all n  factors are equal. 
Moreover, this map respects the symmetries 
of permuting coordinates. Obstructions 
for the existence of such equivariant maps 
depend on whether n  is a prime power or 
not, since the symmetries have a different 
structure depending on the number of  
distinct prime divisors of n . More precisely,  
an elementary abelian group of symmetries 
acts transitively on coordinates if and only if  
n  is a prime power.

That the topological Tverberg conjecture 
could only be settled in the case of n  a 
prime power was believed to be an artifact 
of the proof method, which relies on lower 
bounds for the equivariant topology of the 
associated configuration space. Recent 
(2015) counterexamples to the topological 
Tverberg conjecture for every n  with at 
least two distinct prime divisors thus were a 
surprise to many. The main ingredients for 
these counterexamples are an extension of 
the Whitney trick, which removes pairs of 
double points to construct an embedding, to 
higher multiplicity intersections due to Isaac 
Mabillard and Uli Wagner, and the “constraint 
method” of Pavle Blagojevic, Günter Ziegler, 
and the author. The former provides a way to 

transform vanishing obstructions for  
the existence of equivariant maps from  
the configuration space of X  into maps  
X  ―> d that avoid n–fold points — at least 
as long as X  has codimension 

n
d  in d .  

The latter can be used to lift maps with no  
n -fold points in positive codimension to the 
case, where X may have dimension much 
larger than d— the case of interest for the 
topological Tverberg conjecture.

The constraint method proves results about 
the existence of n -fold points in a generalized 
fashion, encapsulating graph planarity, the 
embeddability of manifolds into d, and their 
higher multiplicity generalizations. Perhaps 
surprisingly, it also exposes chromatic 
numbers of uniform hypergraphs as a more 
rigid version of the same theory.

Many seemingly simple questions remain 
unsolved. For instance, given three red, three 
green, three blue and one yellow point in the 
plane, can they always be split into four sets 
without repeated colors whose convex hulls 
all have a point in common?

Figure 4. Three red, three green, three blue and 
one yellow point in the plane and a colorful 
4-fold Tverberg partition
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